A\
A \
/ = \\ \
A

/
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

/,
/

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSé(FZTIONS SOCIETY

PHILOSOPHICAL THE ROYAL

Mathematical Contributions to the Theory of Evolution. XIX.
Second Supplement to a Memoir on Skew Variation

Karl Pearson

Phil. Trans. R. Soc. Lond. A 1916 216, 429-457
doi: 10.1098/rsta.1916.0009

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand
corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1916 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;216/538-548/429&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/216/538-548/429.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

a
/A

A A

I ¥

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

[ 429 ]

IX. Mathematical Contributions to the Theory of Fvolution—XIX. Second
Supplement to a Memoir on Skew Variation.

By Kari Prarson, F.R.S.

Received February 2,—Read February 24, 1916.

[PraTe 1.]

(1) In a memoir presented to the Royal Society in 1894, I dealt with skew variation
in homogeneous material. The object of that memoir was to obtain a series of curves
such that one or other of them would agree with any observational or theoretical
frequency curve of positive ordinates to the following extent:—(i) The areas should
be equal; (ii) the mean abscissa or centroid vertical should be the same for the two
curves ; (iii) the standard deviation (or, what amounts to the same thing, the second
moment coeflicient) about this centroid vertical should be the same, and (iv) to (v)
the third and fourth moment coefficients should also be the same. If u, be the s
moment coefficient about the mean vertical, N the area, € be the mean abscissa,
o = v/, the standard deviation, 8, = s iy Be = mafus’, then the equality for the two
curves of N, &, o, 8, and B, leads almost invariably in the case of frequency to
excellency of fit. Indeed, badness of fit generally arises from either heterogeniety,
or the difficulty in certain cases of accurately determining from the data provided the
true values of the moment coeflicients, e.g., especially in J- and U-shaped frequency
distributions, or distributions without high contact at the terminals; here the usual
method of correcting the raw moments for sub-ranges of record fails.

Having found a curve which corresponded to the skew binomial in the same manner
as the normal curve of errors to the symmetrical binomial with finite index, it occurred
to me that a development of the process applied to the hypergeometrical series would
achieve the result I was in search of, 1.e., a curve whose constants would be determined
by the observational values of N, &, &, 8, and 3,

The hypergeometrical series was one not only arising naturally in chance problems,
but covering in itself a most extensive range of functions. The direct advantage of
the hypergeometrical series is that it abrogates the fundamental axioms on which the
‘Gaussian frequency is based. The equality in frequency of plus and minus errors of
the same magnitude is replaced by an arbitrary ratio, the number of contributory
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430 PROF. KARL PEARSON ON SKEW VARIATION.

causes 18 no longer indefinitely large, and the contributions of these causes are no
longer independent but correlated.®

Since 3, and B, are by nature positive we can represent all possible values of 8, on a
chartin which 8, and 8, are the co-ordinates of a point in the positive quadrant. But a
little consideration shows that 8, must be greater than 8, thus one-half the area of the
quadrant, that above the line 8, = @, is removed from the field of possible occurrences.
Further, there is a limit to the application of the series of curves discussed when g,
gets large, for the high moments of two of the types of curves, i.e., Types IV. and VL,
or

6~Vt,dn*‘z/u x__OL)Q2
Y =1, ———-—m and Y =1, o s
( 1+ )

become infinite when the order of the moment is greater than », or the probable error
of the fourth moment would become indefinitely large for » = 7, 4.c., we are practically
limited by the line 88,—158,—86 = 0. The first four moments of the curve remain
finite, but from the fifth onwards they can become infinite, the lines corresponding to
these, however, lying outside the above line.f For curves corresponding to points
below this line it is fitting to take as differential equation

ldy _ b+
ydr cytrextem’tent’

(1)

or a slightly more general form which is related to the higher hypergeometrical
F(o,8,v,0,¢, 1) as the present series of curves to the simple hypergeometrical
F (o, B, v,1). The whole theory of curves of the above type has been worked out for
some time past, but has remained unpublished, for we failed to find any definitely
homogeneous data by which it could be effectively illustrated, and for this reason
heterotypic curves have for the time being been left in abeyance. We may, however,
notice the following point. If we take our generalised hypergeometrical to be

B (e+1)(B+1) (y+1)a.B.
L+ 3 i (9+1)(e+1)(z°/+1)9 .- §y+

=Yo+Y1+Y,+

Y
¢

Then
Your _ (ata) (B+2) (y+2)
v (@) (cra) ((+o)

and this will correspond to the ordinary form if ¢ = 0, s.e., F(a, B, v, 0, ¢, 1).

* Just as values of the binomial (p +¢)* with negative n and p>1 very often give good fits to frequency
distributions, so we have recently found that hypergeometricals ¥ («, 8, v, 1) with imaginary « and 8 are
of fairly common occurrence in frequency distributions, and when applied to individual samples from real
hypergeometrical populations may give better fits than the theoretical series, i.c., in card drawings.

T See RHIND, ¢ Biometrika,” vol. VIL, p. 133,
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PROF. KARL PEARSON ON SKEW VARIATION. 431

We have

Yoo =Y _ 2{a,@y—@ef-l-w(06/8+/8’y+ya-—96-—6§—§9)+902(a+,8+’y—-9—e—§)}
5 (Yo +y.)  {aBy+0el+a(aB+By+ya+etel+{0)+a*(at+B+y+0+e+)+2a°}

and accordingly we get the curve approximating to the hypergeometrical of the higher

order by putting
1 dy _ quadratic function of x

ydx  cubic function of x

Qo+ O+ ax? (ii)
Co+ 01+ cyt® + e’ t

where the six independent constants can be expressed in terms of the original six,
a, B, vy, 0, ¢ ¢ It will be seen that a hypergeometrical of the second order will, in
general, have two modes, the exception being when

at Bty =0+retls . .. .. ... (i)

in which case (ii) coincides with (i) the general equation to the fourth approximation
of curves when B3, and @, fall into the heterotypic area. It will thus be noted that such
curves approximate to hypergeometric series of the second order when the special
condition (iii) holds ; always assuming the unimodal character of homogeneous material.
It seems probable that for the most part bimodal frequencies would be those that lead
to values of 8 and S, lying in the heterotypic region, and such are excluded from
practical statistics.

In the original paper® four types of curves were dealt with beside the Gaussian
curve corresponding to an isolated point. A supplementary memoir issued in 19017
dealt with two further types, which had been overlooked until actual experience
demonstrated their existence. I have now to confess the omission of five further
types, not to speak of a horizontal straight line, as sub-groups of the J-section of
curves, which are themselves in practice so rare, that the region of the 3,, 8, plane in
which they occur had not been very fully investigated. My attention was drawn
to these curves while considering the frequency curves for the correlation of small
samples. If we take a sample of four from uncorrelated material, the sample is equally
likely to have every correlation from —1 to +1.f In this case, B =0, 8, = 1'8, and
the frequency curve is a horizontal straight line. What would my series of curves
give in this case ¢ I discovered that they also gave a rectangle of frequency or a
horizontal straight line, and this discovery led me to a closer investigation of the
sub-groups of curves in the neighbourhood of the J-curve area. The point in the

* ¢Phil. Trans.,” A, vol. 186 (1895), pp. 343-114.
1 ¢Phil Trans.,” A, vol. 196 (1901), pp. 443-459.
I ¢Biometrika,” vol. VI., p. 306, and vol. X., p. 312.

3 N 2
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432 PROF. KARL PEARSON ON SKEW VARIATION.

B B: plane for which B = 0, 8, = 1'8, I term the rectangle-point and denote by R.
(See folding diagram, Plate 1, at end of paper.)
The rectangle-point is the point of contact with the axis of B, of the biquadratic

181 (8/82_"9/81"'12) (/82'+3>2 = (4/82'“3/81) (10/82"“1261“18)2;

which bounds the area of J-curves. The novel curves are in part limiting curves
which occur when the point 8, 8, lies on this biquadratic, s.e., transition curves from
J-curves to U-curves and from J-curves to limited range curves, and in part a
limiting curve which exists along the line 58,—683,—9 = 0 which passes through the
rectangular point and never again meets the biquadratic in the loop in the positive
quadrant. It would be convenient to speak of this line as the axis of the biquadratic
loop, but unfortunately the loop is not symmetrical about it, and to avoid misunder-
standing I term it the R-line.

Up to the present the minimum limit to the area of U-curves had not been given.
Since B, is > By, half’ the positive quadrant was impossible, but a recent observation
shows that frequency curves above the line 8,—8,—1 = 0 are impossible. This limit
was suggested in the following manner. When samples of three are taken from an
indefinite population, the frequency curves for the correlation of any two variates of
the three individuals sampled are U-shaped frequency curves, but when samples of
two are taken the correlation must be either positive or negative, and accordingly
the frequency is collected into two lumps or blocks as a limiting case of a U-shaped
distribution. But for two such lumps 8,—B8,—1 = 0. In other words, along the line
Bo—pBi—1 = 0, the U-shaped frequency either brings all frequency to an end, or
passes through a transitional case. The former is the true state of affairs, for 3,
cannot be less than Bi+1. To demonstrate this,* let s, = S (,7), and let there be
n quantities a,. Clearly, s,=mn, and s, =0. Now by BurnsibE and Panton,
‘“Theory of Equations, vol. IL, p. 35,

7

N 2 2 210

=z {(908——.’131) (wt—mr) (wr-ws) } =10 Sy S S

r>s>1 :
s, t=1 ! >
et S Sy S
S» Sz Sy

=| n, 0, s |=mn/(s8—8)—s’

O; S 83
\ 33, 83:» 81

NN N \
T LU N Ny U T
’ \sofnt s A\t ot/

= s, (:82“61_1)>

* T owe this neat proof to the kindness of Mr. G. N. WATsoN.
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PROF. KARL PEARSON ON SKEW VARIATION. 433

which must therefore be either zero or a positive quantity. Thus we see that the
whole area covered by my frequency curves is limited above by the line 8,—8,—1 = 0,
and below by the line 88,—158,—86 = 0. The first line limits all frequency ; the
second line limits my types.*

(2) Before proceeding further, let us examine the limit to all frequency. Consider

the line B,—f,—1 = 0.
The form of the curve ist
@ n @€ mg
=g (102 (1= 2
v Yo < g 00;) < 0&2>

Now, ,

m?—rn'+e = 0,
where

P = 6( 2—/81—1),
3/81 - 2/82+ 6
therefore
r=0 and = 4*/(1—x,) also = 0.

Hence

m/ +m/y = 0and m'm/, =0, or m = —1,my= —1.

The form of the curve is accordingly

or, apparently, U-shaped. Now

b =30 {Bi(r+2)+16 (r+1)}"

=0 {181+4-}!/2:
and 1s finite. DBut
’y = N my™m,™ T (m, +m,+2)
b (my ) T (my 1) T (my+-1)
_ N (m+1) (my+1)  mmy™  (m, +2) (my+2) o D(mitmyrd)
b mytmy+2  (my+my)" ™ (my+my+3) I'(my+38)x I (my+3)
= N it of (m,+1) (my+1) 4xT(2)
b my+my,+2  T(2)x1'(2)
But

my+ 1) (my+1) M ’
ml+m2+2 A1+A2

limit of ¢

* It is not accurately correct to say it limits my types of skew curves. What it actually does is to cut
off an area in which the probable errors of the constants of Types IV. and VI. curves can be very great.
The curves may give a good fit, but the constants cannot be cited as characteristics of the frequency
distribution as they are unstable.

1 The notation throughout is that of my original ¢ Phil. Trans.” memoirs of 1895 and 1901.
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434 PROF. KARL PEARSON ON SKEW VARIATION.

when both A\, are to be made vanishingly small, being m,+1 and m,+ 1 respectively.
Thus the limit

_ 1 ~ L1 _y
I+, o '
Hence #, vanishes or y is zero at all points, but # = —a, and x = @, where it 1s

undetermined. :

Since myfa, = myfa,, we have a, = a,, and the frequency really consists of two
concentrated groups at —a, and a,, or at +3b.

If 1/ and 1) be the distances of the centroid from the two ends of the range,

where n' and #n” are the frequencies concentrated at the range terminals. But
'y = b (myi+1)[(m, +my+2), or we have wfu"y = (m+1)[(my+1) = NNy, or is the
finite quantity which marks the ratio of the vanishing of m,+1 and m,+1; this,
therefore, is equal to n” /7.

Clearly
wh = (0" —=n/) (" +n)
’ " ’ " / bz 17,2
Wy = (n"+0))](n +n)z = 17,
r 1 ’ " / b3
Wy = (n"—=n")(n +n)—§=
/A " ’ 64 — 1 J4
W= (0" +n)) (0 0 T = {0,
and
py = D (/0" ) (0 0" ),
= U*n/n" (0" —n/) (0 +0 ),
— 1)4%/ n (n/2+n//2 77/n//)/(n/+n//)4.
Thus

" / " /

' 7 7 7
'81=:/7+W_2’ :82"—‘%74*%7,"'1:

giving as verification 8,—B3,—1 = 0.

Thus the whole problem is solved if we > know the maguitude of the two frequencies
n' and n" concentrated at —4b and +3b.

As special cases the point on the B,-axis gives B, =0, B, =1, and represents two
equal concentrated {requency lumps n’ = n" =4N. The point at « on the line
Bs—-Bi—1 =0, or B, = B, = = represents a single frequency lump, for which »’ =0,
n’ = N. Ispeak of these concentrated frequency lumps lying on the line 8,—3,—1 = 0,
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as block-frequency, and represent them by the letter B; they correspond to points on
the B-line. (See Diagram, Plate 1.)

The most remarkable limiting case of this kind has been already referred to. It
will be shown in practical examples in a memoir on “ small samples,” now nearly ready
for press, that the correlation between two variates may be determined by sampling
these populations in pairs, and merely observing, which can be usually done without
measurement, whether the pair is positively or negatively correlated. The ratio of
the two frequency ““‘lumps ” easily provides the correlation.®

(8) Let us now consider the nature of the frequency on the loop of the biquadratic,
Taking the form of the curve to be

y = yo (L+afa)™ (1 —zfa,)™
we know that m, and m, are the roots of the quadratic

m2—m (7;—2)+e—7‘+ 1 =0,

where
r =6 (By—Bi—1)/(38:1—2B,+6),
and
— N 7‘2 .
T A8 (r+2)(r+1)

Now e—7+1 = 0 provides the‘biquadratic
~ Bi(8B,—9B:—12) (B,+3)'—(108,— 128, — 18)* (48, 3B:) = 0;

emrp1 = (4B—38)(108,128,~18)'~ B, (8,+3) (88,~98,~12)
(38:—285+6) {B1 (Bs+3)"+4B: (48:—351) (361—28,+6)}

actually

Now B, 48;,—38: and B,+3 are by their nature essentially positive. Hence,
provided 38,—28,+6 is positive, r.e., as long as we deal with points above the line
23,—36,—6 = 0, u.e., the Type IIL. curve line, e—7+1 will be positive, if (8, 8,) lie
outside the loop of the biquadratic. But within the loop it is negative, or one value
of m must be negative, or we reach an infinite ordinate at & = —a, or a,, v.e., a
J-shaped curve. The other ordinateata = @, or —a, is zero, because the other m must
be a finite positive quantity.

If e—r+1 =0, t.c., along the biquadratic loop, one value of m is zero, and the
other is positive if » be greater than 2, and negative if it be less than 2. But

o _ 2(58,—66—9)

r—9 =
3:81"2:82+6

Accordingly above the line 58,—68,—9 = 0, and above the line 28,—38,—6 = 0, r—2
will be negative, but these lines do not meet in the positive quadrant. Hence all

* See “ STUDENT,” ¢ Biometrika,” vol, V1., p. 304, and FisuER, ‘ Biometrika,” vol. X., p. 508,
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along the upper boundary of the loop one m is zero and the other negative.
Accordingly, from the R-point round the upper boundary of the loop, we have the
curve

_ y =y, (1L +axfay)""
I call this curve Type VIII.

Since —m/\fa, = myfa, and m, is zero while m; and a, are finite, it follows that
a, = 0, and accordingly the range of frequency is from « = 0 to @ = —a,. The curve
is therefore a J-shaped curve with infinite ordinate at one end of the range and a
finite ordinate at the other.

Now consider the lower side of the loop. Here 58,—68,—9 will be positive, for
this side is below the R-line and 38,—28,+6 will also be positive until the point
in which the line 28,—38:—6 = 0 meets the lower side of the loop, ¢.e., the point

B =4, B, =9. Hence from the R-point up to B =4, B, =9, a point practically

outside the range of the customary statistical frequencies, r—2 will be positive, or
m, will be positive. Further m,; and @, being finite and m, zero, it follows that a, is

zero, or the curve is
y =y, (L +afa,)™

In this case the curve has a zero ordinate at one end and a finite ordinate at the
other. I term this curve Type IX.

At the point where the line 28,—38,—6 = 0 meets the biquadratic, Type IX.
agrees with my earlier Type III. "

The equation to that type is*

y =y, (L+zfa)e,
where

yOL=i--1 and y =

B

20
0'/81

Hence for 3, = 4, ya = 0, and y = 1fo. Thus @ is zero and the curve becomes

Yy = yoa—xla',
the range being from 0 to .

But in Type IX., since » has become infinite, m, is infinite and the limit to
y =y (1+afa)"

is accordingly the exponential curve

— A
?/ = ?/o@ C,

as we shall see shortly X must equal 1/, where o is the standard deviation.
I propose to call this exponential curve Type X., and the point 8, = 4, 8, =9, K or
the exponential point.
* ¢ Phil. Trans.,” A, vol. 186, p. 373.
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Beyond the exponential point, our biquadratic branch has eutered the area of
Type VI curves,® and m, will now again be negative.
Now the equation to Type VL is

and the range from @ = @ to . The special case of this along the branch of the
biquadratic occurs when ¢, = 0, leading tot

L —q =¢=r—-1,
or
y = yofan
2 (58,~66,—9)

), ==
AV S VR T

where

which 1s positive, since g, is now bencath hoth the liues

This curve, which will be more fully considered below, has a range from a certain
value @ to co. It thus starts with a finite ordinate and asymptotes to zero. Tt is
a transition curve extending from the exponential point along the lower limb of the
biquadratic loop. T call this curve Type XI. The biquadratic never cuts the cubic
along which Type V. lies and no further change occurs in Type XI.
I now pass to the consideration of the R-line or 58,—68,—9 = 0.
‘The general differential equation§ to the type of frequency curve under cou-
sideration is
Vdy . = {V/Bi(By+8)+ (108~ 128, 18) w/o}
ydr o {48,~30) 1 v/ B (8:+3) wfot (26,36~ 6) 2’}

the origin being at the mean.

Hence if 58,—68,~9 = 0, the term in xfs disappears from the numerator, and we
can further get rid of B, by substituting L (66,+9) for it. Making this substitution,
we reach

1dy _ —2v/B,
yde o (3+8)—0 (\/[—;:-—.’]c/a’)z n

*¢ Phil, Trans.,” A, vol. 197, p. 449.

¥ Loc. cit., Equations, bottom of p. 449.

{ As we pass outwards from the exponential point along the biquadratic ¢; ranges from oo to 5, which
it reaches at the asymptote to the hiquadratic 31 = 50, or when 33 = oo, 31 = 50.

§ ¢ Mathematical Contributions to the Theory of Evolution, XIV. On the General Theory of Skew
Correlation and Non-Lincar Regression,” p. 6, ¢Drapers’ Company Rescarch Memoirs,” Cambridge
University Press.

VOL, CCXVI—A. 30
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This leads on integration to

_ o (2 BBV B) e\ e
Y JOKG’(N 3+,8]—\/,Z9_1)——w,> '

I term this Type XII., or the R-line J-curve. The origin is the mean, the range
from @ =—o (v 348448, to o (v/8+8,—+/B). Tt separates J-curves—so long as
we dare above the line 28,—83,—6 = 0-—for which »—2 13 positive from those in which
r—2 18 negative. But »—2 = m+ne,.  Heunce below the R-line the positive i, is
greater than the negative e, but above this line the positive m, is less than the
negative m,, t.c., the upright of the J is emphasised at the expense of the horizontal
part, while below the R-line this condition is reversed until on the biquadratic the
infinite ordinate of the J-upright is veplaced by a finite ordinate.

I propose now to consider a little in detail the nature of these new types of trequency
and the manner of fitting them to actual data. [ have dealt above sufficiently {ully
with “ block-frequency 7 and its eriterion (,—B,—1 = 0 and therefore need only
consider Types VIIL to XII.

(4) Frequency Cuwrve. Type VIII—

y =y (Ltifa) ™"
Range, from @ = 0 to @ = —a.*
#, 1s clearly the value of the ordinate at # = 0, 7.¢., the finite ordinate at the tail.
origin at n = —a,
P=u = a(l=m)(2=m), uy=a® (1—=m)/(3—m),
W= a(T=m)(4—m), W= a' (L—=m)/[(5—m).
Henee for the moment-coeficients about the mean

oz g, =t (L) 13 ) (2 )]

ity = 2a°m (1 —=m)[{(4=m) (8—m) (2—m)*},
g = St (L—m) (4= 5m+ 3m)[{(5—m) (4—m) (3—m) (2—m)'}.
These lead to

dm? (3 —m) 3(3 —?)i) (4=5m +3n)7)

By = T —m) (d=m)*’ = (L—m)(d—m)(5=m)

(Nearly m could be found from the value of 3, by solving the cubic equation
m? (4-—[3])~;~~ m? (9/31- 1 2)—~=~2~L,817)'L«+~ 1643, = 0,

* Of course, whether a is really positive or negative will depend on the sign given to , or the direotion
of the a-axis,
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then « is determined from

83—
a=-tao (‘me) l—_—_—:z—i ,

the sign being determinable from the observed value of u, and y, from

= N(i=m) N1-m \/1—-m
Yy = ———" = —

(it e 2—m 'V 8—m’

and the placing of the frequency curve on the observations by

W= a (1—m)f(2—m).
It, however, we find 108,— 128,18 and 38,~28,-+6, we have
N 24m (m—2)°
(1=m) (5—m) (4—m)*’
. 24 (m—2)°
38, — 28, = — >
A0 = = ) (5—m) (A=)

2 (58,—68,—9)
36:—2B:+6

giving

and thus since m is to be positive, the point (B;,, 8,) must be above the line
—68,—9 =0. The line 28,~—3B8,—6 =0 does not meet 58,—68,—Y = 0 in the
positive quadrant, so that a point below both these lines does not exist in real
frequency. Clearly
l—m = (8/6’2—9,81—12)/(3,31—-2/62—}-6),
= (48,—36,)/(38,—2B.+6),
4—m = 2 (B,+3),

and thus if these values be substituted in 8, as given above, we reach

Bi (B.+3) (88,~98,~12) = (48,—38:) (108,128, — 18)*

the equation to the biquadratic, proving that the point associated with the above
frequency curve lies on the biquadratic.

Again 1—m will always be positive, or m less than unity. For the upper branch
of the loop of the biquadratic lies below its asymptote, or 88,—98,—12% =0, and
accordingly below the line 88,—98,—12 = 0 ; thus the numerator of 1—m is always
positive. So also is the denominator, for the upper branch always lies above the line
2B,—38B,—6 = 0. *

* In fact the R-line (582~ 681 -9 = 0) the parallel to the asymptote (88; - 98, ~ 12 = 0), the limiting
frequency line (8z— 81 -1 = 0), and the Type IIL line (28, ~3B~6 = 0) meet in the point By = -3,
B1 = — 4 of the negative quadrant and the upper branch of the loop lies in the angle between the first two
and in the positive quadrant.

302
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As m is positive and legs than unity the area and moments of the curve are all real
and finite, When the point (8., 8,) moves along the loop of the biquadratic towards
the R-point (B, = 1'8, 8, = 0), the value of 1—m becomes more and more nearly
unity, and ultimately at R we have m == 0, or the frequency curve is

Y =Y

a rectangle, 7.c., we reach the rectangle point. If on the other hand we move towards
infinity along the upper branch of the biquadratic loop, we find 1—m approaches the
value 1/8, and thus ultimately becomes zero, or m = 1. Thus the limiting form of
the frequency curve is a rectangular hyperbola, or rather the part of such hyperbola

y =yl (1 +afa)

from the vertical asymptote © = —a to « = 0.

But this is clearly only a theoretical limit, for it involves 8, = 8, = o, and this
means that if x, be finite, 1, and p, ave infinite-—results impossible in any actual frequency
if the population be finite. It ig clear indeed that B8, must be less than N, for
obviously Nu, << N%u?  Again, 8, is < 8,—1, and accordingly 8, <N —1.% But these
limits are of small service for practical statistics, where even for small samples, say,
N = 20, they would scarcely ever be approached.t Thus the rectangular hyperbola can
only be treated as a limiting form of Type VIIL far beyond the region of actual
statistical experience.] For practical purposes the point is that m is limited to
values between 0 and 1, or Type VIII. ranges from the rectangle to the rectangular
hyperbola. The suggestiveness of this is that curves in the I and the I; areas, i.e.,
above and below the upper branch of the biquadratic loop, must approach these types
as they approach the extremes of thig branch. Generally a U-curve near the biquad-
ratic will be close to a curve resembling a curtailed hyperbola.

* Mr. G. N. WaATs0N has given me a ncwer limit to £, namely, £ = N -2 4 N1 But, except as

showing that B, must be finite, which is otherwise obvious, this is again of no real service.
7 The highest observed values that T know of for 3, and f3; are those given by DuNncker (¢ Biometrika,’
vol. VIIL, p. 238). He gives

¢ Armzahl) Asterina exigua N = 600 f33 = 33-13, [y = 176,
" Avchaster typicus N = 902 By = 128-48, Sy = 4-76.

There are only three groups of frequency in each, 4, 5 and 6, and the bulk of the observations are
concentrated in 5. The observations do not give, as he suggests, PrarsoN’s Type IV. and Type VI.
curves respectively ; the «, in both cases is less than unity, corresponding to Type IV. But both fall into
the heterotypic area of Type IV. The attempt to fit with heterotypic curves would hardly be profitable
until there was absolute certainty that the group with 4 < Armzahl’ was not the result of accident.

i Theoretically very high values of 3, and S can easily be found, i.e., for samples of four, when the
population sampled has, say, a correlation of 098; here the frequency curve for the correlation
coeflicient gives 3; = 203:325 and 3, = 311-731, but it is the rapidly approaching zero of p» which leads
to these results,
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In concluding our discussion of this curve we may note that, perhaps, the easiest
way of tracing the biquadratic is to calculate 8, and 3, from

g, = 4(2y—=17(y+1) 8, = S(y+1+6) 3 (y+1) (164°—13y+3)
1 3y—1 S 3—y (8y=1)(8—v)

by giving a succession of values to y.

For v = 00 to 8 we get the points on the lower branch of the loop; for y = 0'5 to
0'3 we obtain the points on the upper branch of the loop. It will be seen that this
amounts to taking the origin at 8, =-—38, 8, =—4, and rotating a line through this
point round it to intersect the curve. The slope of this line to the 3, axisis 8/(3—+).

The cubie, it may be here noted, which gives the Type V. curve may be traced from

. 3 (y+1+ 5 (y+1)(4y—38
Bl =4 (VH“J)a 182 = (V{; lBl) = (')/ ‘3)( Y ) .
oY [3 _’y

Here y must be given values from 1 to 3.

The Type LIL line, which passes through the Gaussian point, also passes through
B, =-—38 and B, =—4, and the above means of getting at the points on the cubic
corresponds to finding the points in which a straight line passing through (—4,—3)
and rotating from the position of the Type III line cuts the cubic—its slope in any
position being as hefore 3/(8—v).

Actually if 6 be the angle between the above line from (—4,-3) to the cubic, 7.e.,
tan 6 = 3/(3—7v),

r = 12 (sec 6—cosec 0),
but to use this polar equation has not been found a very ready manner of plotting the
cubic.*

(5) Frequency Curve. Type IX.—

y = .7/0<1+ 2) :

Range from @« = —« tox = 0; yis zero at one end of the range and equal to ¢, at
the other.

The analysis proceeds pleolsely as in the case of the curve of Type VIII., except
that m is now opposite in sign. We have

¥ = N (1+m)/a,
7 (~= distance of mean from point z = —a) = a(m+ 1)/(mJ}2),
o = py = &’ (m+1)[{(m+3) (m+2)°},
wy = =2a’m (m~+1)[{(m+4) (m+3) (m+2)*},
py = 3t (m+1) (8m*+5m+4)[{(m+5) (m+4) (m+3) (m+2)},

* The parts of the cubic and the quartic lying in the other three quadrants have been plotted by
Miss B. C. B. Cave. Geometrically the interrelations of the two curves, their asymptotic and other
critical lines are of much interest, but until some interpretation can be put on imaginary values of the
moment coefficients, these interrelations have no statistical bearing, ‘
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leading to
3 (m+3) (83m°+ dm+4)

(m+1) (m+4)(m+5)

Am®(m+ 3)
m+1) (m+4)"

1= 3, =
B ( f

Thus _
m? (B, —4)+3m* (88, —4) 1 24mB,1- 168, == (

would give m, and « would be found from

o = 3&«7(771,4—2)«/”/_)7&’
m-+1

the sign being found from the observed value of u; Lastly

_Nm+1 m-+ 1
°T s m+2 m+3"

Practically it is better to determine m from

o 2(58,—65,-9)
3B—2B+6

which value of m substituted in the expression for B, gives the biquadratic.

Clearly since the lower branch of the biquadratic lies below the line 58,—68,—9 = 0,
m is positive until the line 28,—38,—6 = 0 is reached, and in this section of the
branch, 7.c., from m = 0 to m = o, or from 8, = 1'8, 8, = 0 up to B, = 9, B, = 4 (the
exponential point, B) occurs an interesting isolated point——the line-point L. When
B, = 2'4, B; = 032, then m = 1, and Type IX. degenerates into a sloping straight
line, 4 = ¥, (L +xfa), or the frequency lne is

‘ ///m - ; x \
y =N (1 + g ).

So 3\ 20,
Up to the line-point, Type IX. curve rises at @ = —a perpendicular to the axis,
of x, at the line-point it makes a finite angle less than 90 degrees, and after the line-
point we start with contact at # = —a.

It is interesting to note the sloping line arising as a case of these generalised
frequency curves, and we observe that its locus is separated from the rectangle locus
by a considerable interval along the biquadratic in which the curve of Type IX. is
very trapezoidal in form.

(6) Frequency Curve of Type X. The Exponential Curve—Beyond the line-point,
T at 8, = 24, B, = 0'32, we reach as m steadily mounts a series of frequency curves
which culminate in the exponential curve at E or 8, = 9, 8, = 4.

Clearly

Yo = 'Nm+1 = N+ 1 , mto N when m 1s infinite,
' a o m+2 m+1 a
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Further
/ ) (m+2) -2
o o (m +2 )
= Ee*“’/",

o

the range being from © = 0 to — oo, if we take the positive sign—and from = = 0
to + oo, if' we take the negative. It is thus sufficient to consider

ﬁ ()i,v/(f
o P

(e

Y=

with range from @ = 0 to @ = + co. The first two moments of the area about x = 0
are vy = o and v/, = 6>, Thus & = ¢ and u, = ¢°, as it should. Lastly, u; = 2¢* and
wy = 9o,

The fitting of the exponential curve presents no difliculty.

The exponential point I is a transition point of great interest as being even more
than the Gaussian point G—the mecting point of many types. At E, Type [X,
changes to Type X1, but at E the familiar Type II1. passes from a zero ordinate
at the limited end of the range to a J-curve with infinite ordinate. Further, K 18 a
point at which the areas of Type I. (Type 1) as a limited range with zero ordinates at
its terminals, and as a limited range with one infinite ordinate at a terminal (Type I;)
meet. Finally, Type VI. avea, which lics between Type ITL line and Type V. cubice,
is divided into two sections by Type X1., which lies along the lower branch of the
biquadratic loop below E. Below the biquadratic, Type VI. takes the form

Y =y (x—a)fz?,

with a range from » = a to @, ¢, and g, being both positive. Tn the area, however,
below Type 111, and above Type X1, Type VI. takes the form VIj, or the J-shaped
curve

— Y
v = a”;ql (;L-,U__a')'lz’

with a range from @ = @ to « = ®. In this case » = 6 (8,—B—1)/(88,—28,+6) will
be negative, since we are below the line 28,—88,—6 = 0. Further, ¢ is negative
since we are above the cubic or Type V. branch

1 (48,—38,) (28,—38,—6) = £ (B,+3)".

Thus our quadratic
i —rm/ e = 0,

corresponds of necessity to real roots, of which one will be negative and the other
positive. The positive root will be

5V —de+r),
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and is therefore numerically the smaller root since » is negative ; it will be less than
unity, and therefore m’—1 = m will be negative if

L (W —tetr) <1,
or
e—1r+1>0,

but this is the condition for the point B, B, lying inside the loop of the quadratic.
Thus in this case we reach the J-shaped curve of Type VII., or

Yo

AN e 7

In order that the area of this curve and its moments should be finite, it is clearly
needful that ¢, should be less than unity.

(7) Frequency Curve. Type X1.—Beyond the expouential point the lower branch
of' the biquadratic is below the line 28,—38,—6 = 0, and consequently m is again
negative and the curve takes the form

Y=y,

- 2 (562”6;81“’ 9) i

28— 33— 6

The range is, however, only limited in one direction, it 1s from 2 = b to x = o, say.

where

This lower branch of the biquadratic loop tends to become vertical and asymptotic
to the line B, = 50. Hence m takes all values from « down to 5.
Clearly, for moments about = = b,

N 1 -
Ny = Yo )
Mo m—p—1 -1

and these will be real and finite if p < m—~1, or only the fourth moment would fail
at the limit 8, = o, which indeed cannot in practice be reached. At the same time
if we want the probable error of the fourth moment to be finite, 1t is needful that 4/,
should be finite or we must have m > 9. Thus m = 9 must be where the curve passes
into the heterotypic region and becomes of doubtful application.

We easily find from the above result for 4/,

& = b(m—1)[(m—2), py = o = b (m—1)[{(m—2) (m-3)},
us = 26°m (m—1)[{(m—2)* (m—3) (m—4)},

py = 30 (m—1) (3m*—=5m -+ 4)[{(m—2)* (m—3) (m—4) (m—5)},
leading to 4
' 4m’ (m—3)
m—1)(m—4)"

3 (m—3) (8m"—dm+4)
(m—1) (m—4) (m—>5)

/81:( B, =
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Thus for m =9 we find B, =972, B, = 22725, which satisfy the equation
88,—15B8,—36 = 0 of the heterotypic line.
m may be found from

m = 2 (5/82"6/81"9)
2:82"3181"6 ’
or from B, alone by the cubic

then :
m—3

b= +o(m—2) i

>

and |

Yo = Nb™ 1 (m—1),

while the mean & = b (m—1)/(m—2) enables us to place the curve on the observations.
There is no discontinuity in the form of the curve down to m =5, but only
discontinuity after m = 9 in the probable errors of its moment-coefficients.
The curve starts with a finite ordinate and meets that ordinate at a finite angle’ it
asymptotes to the x-axis at = o, and has no point of inflexion except at infinity.
(8) Frequency Curve. Type XII.—

(e (VBEB VB + e\
Y= %<o_(‘\/3—"+—131__\/E)——96> ’

This J-curve arises along the R-line, or 58,—68,—~9 = 0. Its range is from
z=0o(v/3+B—VB) to = —o(v/3+B++/B), and then its mean is the origin.
When 8, is zero it degenerates into a rectangle (i.e., at the rectangle point).

In order to illustrate the nature of the curve more fullylet us start from the
general equation which arises when the denominator of the differential equation has

real roots,* 7.e.,

y = oo (L+afa)™ (1—wfay)™,
where
_ N mm™mym I (m,; -+ my+2)
=3 (my+my)" ™ T (my+1) T (my+1)

and
my _ My _ My -+,

a A, b
the origin being the mode and b the range.
Transferring to the mean as origint this becomes

Yo <b(m1+1) +x>m( b(m2+1) ___m>mz,

™0™\ + Mg + 2 \1; + My + 2

y:

* ¢ Phil. Trans.,” A, vol. 186, p. 369.
T Loc. cit., p. 370.

VOL., CCXVI.—A. 3r
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where®
b = 1o {8 (mi+my+4)° +16 (my+my+3)} "

v _ N I (m,4+my+2)
™M, prmtmetl Y (7%1 + ]_) T (m2+ 1) >

on substitution for @, and a, as above.
Now put m,+m, = 0, or m, = —m, = m, say.

Then
Y= f@%z(a_m) <b (”;Jr ) +w>m <ﬂ1§"ﬂ) —x)ﬂm,

while
b=34c{168,4+48}" = 25 (B, +3)"

It remains to find m.
Now m, and m, are the roots of T

m*—(r—2)m+e—r+1 =0,

Where
6 (/82 '/81 1)
po= = 1l T/ = + + 2,
(m1+m2+ 2)2

‘T 4448, (m1+m2+4)2/(m1+m2+ 3)

Hence, when m,+m, = 0, we have

r=2 or 5B,—6B,—9 =0, the R-line,
and
e = 3[(B,+3).
‘Whence

m*=1—e¢ or m= + B
3+,

But I' (2) = 1, and it is well known that

1 m
I'(L+m) T (1—m) = = ;’w.

Thus

sin r B r} . A B
N JL 3+ <cr(«/3+ﬁ1+\//61)+90>\/§f'§.
y= 2o \//é; 0(\/34')61_‘/51)—58

This is the full equation to the R-line J-curve, the mean being origin.f It requires
for its determination only a knowledge of B, but we must be also certain that the

* Loc. cit., p. 369.
¥ Loc. cit., pp. 368-9. Deduced at once from m'2 - rm’ +e = 0 by putting m’ = m+ 1.

1 The sign of &/B1in o (/3+B1+ /1) must be determined from that of ps.
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condition 58,—68,—9 = 0 is satisfied within the limits of random sampling. Tts
possibilities extend from B8, = 0 to 8, = . When 8, = 0,

N
= o3 the rectangle.

Now consider what happens for any frequency curve of the limiting character
when both B, and B, become infinite, say, in the ratio 8, = pB,. Then

and accordingly » will be finite if p is finite, except along the Type IIL line.
Accordingly for B, = , ¢ will be zero. Thus the ratio of 8, to 8, is from their
values, :

which agrees with the above result for .
For the special case when » = 2, we have p = §, which agrees with the limiting
ratio of B,/B, along the R-line.

Now when ¢ = 0 we have from
—(r=2)m+e—r+1 =0,

(r=24(r—2Y+4r—14),

(r—247r)=7—1or —1.

l\:’]i—‘ N]n—a

Thus from the equations on page 445,

N T (m1+m2+2) < ma+1 w‘)lm /_in_é_j—__l____f yng
0 I (my+1) T (my+1)\my+my+2 b \ml-i—m2+z b/

_ N (m,+1) 1 <Z+§>T~I<_«£>—]
b I (my+2)\r b b)

_N(mzilj< _zyT!
- 1 b) ,

x

if we change the sense of the axis of z and take 2 from 0 to +5b.
‘Now in order that & should be finite it is needful that b should be infinite when
my = —1, for

o = b (my+1)[{r (r+1)}.

But if b be infinite, y = 0 owing to the factor m,+1, for every value of , except = 0.
Hence the frequency is a concentrated lump at « = 0, and this involves of itself o« = 0,
3r2
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But if ¢ =0, b must be finite or zero, and these both again throw us back on a
concentrated frequency at z = 0. '

Accordingly, when B, and B, both become infinite, we deal with a concentrated
frequency lump. But the ratio of B, to B, will depend on the manner in which we
have reached this limiting case.

For example, if we are dealing with the correlations in samples of two drawn from
a population in which the correlation is p, the frequency consists of two lumps, but
as p approaches unity, one lump shrivels up, 8, and B, both become infinite, but their
ratio is one of equality, 7.c., we approach infinity along the line 8,—8,—1 = 0.

When we take samples of three from a population of correlation p, the frequency
curves are U-shaped, but as p approaches unity the frequency concentrates in one leg
of the U, 8, and B, both become indefinitely larger, but their ultimate ratio 8./B,
appears to equal £.* The U-curve flattens down into an L-curve, of which the
horizontal limb extends to infinity and becomes indefinitely thin, while the vertical
limb contains all the frequency.

(9) Scheme of Skew Frequency Curves Represented as a Diagram.—We are
now able to considerably enlarge our diagrammatic representation of frequency
curves. (See Diagram, Plate 1.)

Tivery distribution is represented by its characteristic co-ordinates 8, and 8,, which
must be positive, and therefore we need only deal with the positive 8, 8, quadrant.
No frequency distribution at all can lie above the line 8,—8,—1 = 0; this restriction
removes more than half the positive quadrant. No frequency distribution can be
adequately represented by one of the present system of skew curves, if it falls below
the line 88,—158,—36 = 0. The area below this line is therefore termed heterotyprc.
Heterotypic distributions ave to say the least of it very rare, if they be not extremely
improbable. 'We have seen that there is some reason to suppose that bimodal
distributions would give rise to such heterotypic distributions, but with our present
views as to frequency such distributions when they do not arise from the mere
anomalies of random sampling are classed as heterogeneous, and supposed to be due
to mixtures.

Having thus limited our area at top and bottom we proceed to consider the various
possibilities that arise.

The B,-axis, where B, = 0, is the axis of symmetrical frequency distributions.
Possibilities begin at the B-line or the point 8, = 1, or we have two equal concen-
trated frequency blocks at any arbitrary distance b. This is the case of two
alternative values, either of which is equally probable. For example, heads or tails
in the repeated tossings of a single coin, or positive or negative perfect correlation
in samples of two taken from a population of individuals bearing two uncorrelated

* T use the word “appears” advisedly, because the ratio has been obtained by determining the value

of By/By for bigh numerical value of p. The actual ratio for p = 1 depends upon approaching a limit
in vather complicated elliptic integral expressions, which I have not yet accomplished.
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characters. Below the point 8, = 1, descending the B,-axis, the two concentrated
frequencies expand into a symmetrical U-curve. This is Type Il with the equation

y= o (1=atfat)
and the criterion 8, = 0, B, < 1'8.
Here*

m =% (9=5B,)[(3—P.),

o’ =" . 283,/(8—B.),
__N L (§—m)

Yo = —== .

V270 T (1—m) v E—m

and

When 8, = 1'8, m = 0, and we reach the “rectangle-point” R. Here y, = N/(2a)
aﬁd o = C&/ \/ 5

Samples of three individuals from a population whose individuals carry two
uncorrelated characters give a symmetrical U-frequency for the coefficients of
correlation of those characters in-triplets of individuals. In this illustration 8, = 1°5.
Samples of four individuals from the same population give a rectangle for the
frequency distribution of the coeflicients of correlation. Passing still lower down the
axis of symmetrical frequency the type is now Type II, or the limited range
frequency curve

Y — Yo (1 _lea‘z)m

and the criterion is 8, =0, B, > 1'8 < 3.
In this range m increases from 0 to oo, and
m =% (5 8:—9)/(3—8,)
062 _—_'- 0'2 . 2 62/(3_,82),

Jy = N T (4m)
'V 270 '(14+m) vV3+m

We see that the range grows greater as m approaches infinity, or 8, = 3, when we
reach Gt the Gaussian point (8, = 0, 38, = 3). k

If samples of n individuals be taken from an indefinitely large population in which
the individuals carry two uncorrelated characters, then if n be 5 or over, all the
frequency curves of the correlation coefficients of these samples are of Type II;, only
approaching the Gaussian when 7 is very considerable indeed. For example when
n =25, B,=27692, and the frequency is still a good'way from the Gaussian.
When n = 400,38, = 2°9850, it is thus fairly close to it, but is not coincident.

* Tt is, perhaps, worth noticing that for 8; = 15/7 we obtain the ordinary parabola as a special type of
frequency-curve.
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After we have passed the Gaussian point we obtain curves of unlimited range of
Type VIL., of which the equation is

y =y (L+a%a?)™,
The range of B, is from 3 to o and
m =% (58, 9)/(B.~3),
falls from infinity to 2°5; while
af = o®. 2,/(8,—3),

R U(m)
'0 V270 T (WL—%) \/(m_%)

Tllustration of curves of Type VIL* are not infrequent in biological statistics. We
see that the Gaussian is a mere point in an infinite range of symmetrical frequency
curves, and a single point in a doubly infinite series of general frequency distribu-
tions.

Now let us consider the asymmetrical frequency curves displayed on the Diagram.
If we approach from the  impossible area ” we reach on the B-line the first available
type of frequency—the alternative concentrated blocks. At one end of the B-line
we have two equal isolated frequencies, and at the other a single isolated frequency.

Crossing the B-line we reach the area of limited range U-shaped curves, v.e., Type
I, which has for its equation : ‘

Y=1Y, (1 +m/al)—m] (1 _,x/az)—«mg.

This U-area extends as far as the upper branch of the loop of the biquadratic, the
asymptote of which, 248,—278,—38 = 0, is indicated by a broken line. In U-shaped
frequency curves both m; and m, are necessarily less than unity, for their product
is e—r+1, which is less than unity and positive above the upper branch of the
biquadratic (i.e., e—r+1=0). Type Iy is fitted as Type L. (see ‘ Phil Trans.,” A,
vol. 186, p. 367), and has been illustrated by me (‘Roy. Soc. Proc.,” vol. 62, p. 287),
by fitting curves of frequency to cloudiness. The frequency curves for the correlation
coeflicients of samples of three drawn from a population whose individuals have
two characters of any degree of correlation are also skew U-shaped frequency
curves, although their algebraic form has not the above simplicity.

* Type II;, was discussed in my first memoir, ¢ Phil. Trans.,” vol. 186, p. 372. Type II; and Type VIL
are briefly referred to in ¢ Biometrika,” vol. IV., p. 174, but, unfortunately, with some rather disturbing
misprints. They are correctly placed on RHIND’s diagram, ¢ Biometrika,” vol. VIL, p. 131, but the
formulz for fitting are not given. The formule have been given for many years in lecture-notes, and
the curves have been frequently used.


http://rsta.royalsocietypublishing.org/

%
I

a4
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PROF. KARL PEARSON ON SKEW VARIATION, 451

On the upper branch of the biquadratic loop we reach curves of Type VIIL, i.e.,

Y=Y (1+m/a’)_ma

discussed on p. 444 of the present memoir. Here s is less than unity.
We now pass into the loop of the biquadratic between the upper branch and the
R-line. Here we have J-curves, Type I, of the form

y =1y (1+xfa)™ (1 +xfa,)

where m, 1s less than unity, and m, is less than m,.
Coming to the R-line, m, becomes equal to m, and we have Type XIL., or

(\/m+\/_,§;)+m> &
(\/m—\/ﬁl)—x !

discussed on p. 446 of the present memoir. Below the R-line, we return to Type I;,
but m, is now greater than m,.*

We now reach the lower branch of the biquadratic loop. This is divided into three
portions by three critical points. The first portion is from the rectangle-point (R) to
the line-point L. In this portion we start from R with the curve of Type IX. or,

o
y=?/o<
o

y =y (1+afa)"

for m = 0, or the rectangle, and proceed from that value to m = 1, which gives us the
line (or triangle); the range is —a to 0. Since m is always < 1, the curve rises
perpendicularly at @ =—a, and approximates to a trapezoidal form. The method of
fitting is discussed in this memoir, p. 441. The fitting of the line curve
y =y (1+z/a)

is dealt with on p. 442,

Beyond the line-point L we have Type IX, which differs in no way from Type IX,,
except that m is now greater than unity, and there is contact of a rapidly increasing
order at x =—a.

When m = we find Type X. the exponential curve, at the exponential point E.
The fitting of this curve

has been discussed on p. 443.

* For example, at the point 8, = 4, B) = 2, hetween the R-line and upper branch,

02128 / 07123
= 1+ % / 142
y yo< + a1> ( ol

but at 85 = 8, 1 = 4, between the R-line and the lower branch,

/ 2 \74011 f/ 1074011
y=p(1+2 / 1+ 2
y ?/0< +a1> ( e
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Since E is the junction of several types, we turn to consider Type III. which is the
curve found along the critical line '
28,—38,—6 = 0.

It passes through the Gaussian point G, and its equation is
y =1y, (L+afa)? e,

It is fully discussed in my first memoir; see ‘Phil. Trans.,” A, vol. 186, p. 373,
et seq.

From G to the exponential point E, p ranges from o to zero, which latter value
provides the exponential curve. After the exponential point p becomes negative and
we reach Type III;, a J-curve with range limited in one direction only. This curve
separates the doubly limited curves of Type I; from curves of Type VI;, which lie
below the line 28,—88,—6 = 0, and above the lower branch of the biquadratic loop.
On this lower branch of the loop we have Type XL, or the form

Y=y "

the range being from an arbitrary value b to o, and m ranging from o to 5. This
type is fully discussed in the present memoir; see p. 444. Tt continues right away
along this branch of the biquadratic, but at 8, = 22725 and B8, = 972, the eighth
moment of the theoretical curve would become infinite, and accordingly the probable
error of the fourth moment coefficient would become theoretically infinite. Thus since
the fitting of the curve depends on the fourth moment its constants would cease to
be reliable measures of the distribution. We enter at this point the ‘ heterotypic
area,” for this type of curve.* We have now two further areas to clear off, namely
those between the Type IIL line and the lower branch of the biquadratic loop.
Above the former and below the latter we have the range of double limited frequency

curves, t.c., Type I, or
y =y (L+axfa)™ (1 —xfa,)™.

This curve was fully discussed in my first memoir (‘ Phil. Trans., A, vol. 186,
p. 876, et seq.) m, and m, are both positive, and experience has shown that probably
the bulk of all frequency distributions cluster into this area.

Above the biquadratic loop and below the line 28,—88,—6 = 0, we have curves of
Type VI, or

— Yo
Y= (x—a)®
with range from & = a to © = .

* Of course, by using the actual eighth moment of the data, instead of the eighth moment of the
theoretical curve, the standard deviation of the fourth moment would be finite, but this procedure
would really indicate that, as far as the high moments are concerned, curve and data were discordant, and
that we should not really be finding the probable error of a constant of our theoretical frequency curve.
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They have been considered on p. 443 of the present memoir. Their full theory
1s precisely that of curves of Type VL. in general, discussed in the first supplement to
my memoir on skew variation ( Phil. Trans.,” A, vol. 197, p. 448, et seq.). The only
point to be emphasised is that the g, of Equation XIX. of that memoir in this area
is negative and less than unity. The treatment is identical.

Below both the Type IIL line and the biquadratic, we have a space bounded by the
cubic

4 (48,-38,) (28,—341—6) = B, (/32+ 3)2-
This is the area of Type VI. proper, .c.,

y =y (x—a)fx"

with range from # = @ to = ®, ¢, < ¢, being positive, and is fully discussed in the
memoir just cited.
The area of Type VL. is limited by the above cubic along which Type V., or,

Y =y re "

from = = 0 to @ = oo, describes the frequency. Its full consideration will be found in
¢ Phil. Trans.,” A, vol. 197, p. 446, et seq. Below the Type V. cubic we reach the
area of Type IV. curve, or

y — yoe—-vtalrl (z/a)/(l _I__(m/a/)2)m.

This has unlimited range in both directions and its treatment is fully discussed in
my first memoir (‘ Phil. Trans.,” A, vol. 186, p. 876, et seq.). Theoretically, Types IV.
and VI. describe all types lying below the line 28,—38,—6 = 0. The objection to
their use lies in the increasing probable errors of their constants, however good their
general fit may be. To warn the statisticians of this, the line 88,—158,—36 = 0, is
drawn on the diagram and the area below it is marked “heterotypic area.” T use
this term to signify that it is doubtful whether my skew-frequency curves, depending
only on the first four moments, can adequately describe distributions of types falling
below this line; they require the use of the fifth and higher moment coefficients.
Their occurrence in practice, however, must be rare.

Tt will be noticed that the line 8,—8i—3 = 0 is drawn through the Gaussian point.
This is the relation which must be satisfied in the case of PoIissoN’s exponential limit
to the binomial. Hence, in the case of a distribution with 3,, 8,, near this line, it is
worth while investigating whether the “law of small numbers ” is appropriate. Above
this line every real binomial distribution, .e., cases of p and g both positive and less
than unity, and 7 positive (taking the binomial as (p+¢)") must lie, for

B:—3 _ 1—6pgq ,
B 1—4pq
VOL. CCXVI.—A, 3 Q
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and the right-hand side is clearly less than unity. This limited area covered by the
real binomial explains its relative infrequency as a descriptive series in practical
statistics. If, however, we take the negative binomial as admissible, 7.e., allow forms
of the type

(p—q)", where p—q=1

we extend the possible area of a binomial down to the line 28,—38,—6 = 0.

Such a type of binomial is by no means of infrequent occurrence and can be more or
less justified on @ priori grounds.® Below Type ITI. line, the values of p and q become
in the mathematical sense unreal, 7.c., imaginary. It is by no means certain, however,
that such imaginary binomials with real moment coefficients may not, like imaginary
hypergeometricals, give statistically good fits and be ultimately provided with
physical interpretations.

(10) Concluding Remarks.—It is very difficult to assert finality for any scientific
investigation, but I trust this second supplement to my original memoir on skew
variation of 1894 has garnered the last harvest of possible types within the limits
proposed in that investigation. The object was the discovery of a system of frequency
curves providing for every possible variation of the first four moment coefficients of
a distribution and provision for their rapid treatment and calculation. Since 1894
much has been done by the provision of tables of the new functions and improved
tables of old functions necessary to carry this out.f Diagrams like that accom-
panying this memoir, enable the statistician who has calculated the characteristic 8,
and (3, to select at once the appropriate type, from the position of the point B, B, in
the 81, B; plane. The first diagram, prepared by Mr. A. J. RHIND at my suggestion,
has been long in use.f For the present very carefully prepared and much extended
diagram I have to thank my colleague, Miss Apuramne G. DAVIN, whose labours cannot
fail to be appreciated by those having to handle practically statistical data.

Since the publication of my original memoir on skew variation, many attempts have
been made to express the nature of skew distributions by other systems of curves or
by expansions in series. I have given careful attention to these competing systems
and have discussed some of them elsewhere (‘ Biometrika,” vol. TV., pp. 169 to 212).
My chief objections to them arise from the fact that they either (i.) cover far less
than the necessary area ; or (ii.) involve constants the probable errors of which can be
indefinitely great; or (iii.) involve constants the probable errors of which have not
been or possibly cannot be calculated. In no case that I know of have they syste-
matically been applied to extensive ranges of data, and the goodness of fit compared
with that of other systems. The existence of such competing systems is at any rate

* See ¢ Biometrika,” vol. IV, p. 209, and vol. XI., p. 139.

T Now collected in “Tables for Statisticians and Biometricians,” issued by the Cambridge University
Press. ‘

I ¢ Biometrika,’ vol. VIL, p. 131.
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noteworthy evidence that to attempt to describe frequency by the Gaussian curve is
hopelessly inadequate. It is strange how long it takes to uproot a prejudice of that
character ! If the reader will turn again to the present diagram, he will see that the
Gaussian frequency occupies a single pont in an indefinitely extended area. Those
who support the Gaussian theory have to prove that no distribution occurs at a
distance from the point G of our diagram greater than could be accounted for by
the probable errors of sampling of 8; and B,. These errors are known and have been
tabled® and that position is’quite untenable. Frequency distributions occur every day
which by no manner of means can be described by Gaussian systems.

It has been said that my skew curves suddenly change their algebraic type and
that the statistician is puzzled by a slight change in the constants 8, and 8, involving
such radical changes in the equation to the type. But if the reader examines the
present diagram, he will see that the main Types Iy, I, Ip, IV., VL. and VI; occur in
areas, while the remaining types occur in the critical curved or straight lines which
bound these areas. Special cases like the Gaussian, the exponential or the rectan-
gular distributions occur where critical lines intersect. Now all these critical lines
are really critical in the sense that a change of important physical significance occurs
in this neighbourhood, and it is very unlikely that physical changes will be
unaccompanied by sharp algebraical changes of form, such as are directly obvious
in my curves, but are disguised by discontinuities in some of the proposed alternative
expressions in series. f ‘

Any one illustration that the frequencies which occur in actual statistical data can
practically cover the whole possible area of the B,, B, planes, and can present
trequency distributions which change abruptly in type, will suffice to confute both
the argument that frequency is concentrated in or near the Gaussian point, and the
argument that it is undesirable that skew-frequency curves should be so manifold in
form, although how they are to change from U to J, to “cocked hat,” to rectangle
and to exponential forms without this abrupt change will be a puzzling problem to
solve for the professed mathematician. An illustration of this character has been
several times referred to in the course of this paper. Let us suppose there exists
an indefinitely large population, each individual of which carries any number of
characteristics which are correlated together, for simplicity we will say according to the
normal law. We may suppose that there are enough palrs of characters to give all
values of the correlation p from +1 to —1.

* <Tables for Statisticians and Biometricians,’ pp. 68-71.

T An analogy might be given in the case of the expression of a “cocked-hat” shape of finite range
and a U-shaped distribution by a single FOURIER’s series, Here the trigonometrical expression by the
Fourier’s series would be superficially the same if kept in symbolic form, while the algebraic form of the
U-curve would require two vertical asymptotes and its equation would be wholly different from that of
the «cocked-hat’ form. The Fourier expression would only disguise the real discontinuity. In the same

manner real discontinuity of form is disguised in the series which express skew frequency in terms
of a long series of moment coeflicients.

3 Q 2
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Now from this population we will take a large number m of samples of =
individuals. If in each one of these samples we calculate the correlation, », between
two variates, then » will not be equal to the value of p in the sampled population, but
the m samples will give a frequency curve for #, which is limited in range between
+1 and —1 and 1s determined by n the number of individuals in the sample and by
p the correlation of the characters in the indefinitely large population sampled. We
thus obtain a doubly infinite series of frequency distributions. The general theory of
such distributions has been worked out by “StrupuNT” (‘ Biometrika’ vol. VL, p. 302,
et seq.), Mr. H. B. Sorer (Ibid., vol. IX., p. 91, et seq.), and Mr. R. A. Fisugr (Ibid.,
vol. X., p. 507, et seq.). The actual forms of the frequency curves are not usually
expressible by simple single functions, but the ordinates and the 8,, 8, admit of
numerical determination. The calculations are extremely laborious, but up to the
present the members of my laboratory stafl have calculated some 270 frequency
curves with nearly 40 ordinates each for values of p ranging from 0 to 1, and of
n from 2 to 400. The great bulk of these curves show no approach to normality.
The values of B, B, range from points on the B-line down to infinity, the distri-
butions contain concentrated blocks, U-shaped curves, J-shaped curves, rectangles,
trapezoid-like forms and every variety of skewness in doubly limited range curves.
Only in cases where 7 is very considerable and p is neither a positive nor a negative
high correlation is there an approximation to the Gaussian. For a series of curves
in which @8, can be 5 and B, = 9,—or both, if we will—ten times these amounts,
it is idle to talk about the value of the Gaussian curve (8 = 0, 8, = 8) in describing
variation. These frequency curves can be actually obtained by experimental sampling,
although the process is laborious, and indeed were so obtained in the first place.”
They arise from observation and experiment. The remarkable point about them is
that they illustrate all the types we have been discussing and justify sharp transitions
in algebraic forms by showing that such transitions correspond to actual physical
facts arising from experimental statistical data. The whole illustration, details of
which will shortly be published, indicates the evil of implicit reliance on a classical
theory.

The Gaussian theory of error has, with great weight of authority, been applied to
determine significant differences in statistical constants.  The theory of the
“probable error ” must be justified in the case of each statistical constant to which it
is applied. Psychologists have been busy discussing the differences found in mental
correlations deduced from small samples on the basis of significance judged by the
Gaussian theory of probable error. That theory has practically no application, as the
“ probable error” has really no meaning in the case of the bulk of the samples dealt
with. Applications of the theory of probable error in other sciences than psychology
to experimental results based on small samples will readily occur to the reader. The
conclusions may be correct or incorrect, but they are unquestionably based on an

¥ ¢ Biometrika,” vol. VI, pp. 305-7.
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inflation of the Gaussian point, G, to cover all that may be happening in the whole
area of possible B, B; points in our diagram. It cannot at present be too often
emphasised that such inflation is illegitimate, and that, as Dr. IssErnis has recently
indicated,® the assumption that the distribution curves of statistical constants follow
the Gaussian curve is not legitimate, especially in the case of “small samples,” which
not only for many commercial purposes, e.g., experimental brewing, but in numerous
branches of science, e.g., psychology, astronomy, and even physics, are all that
economy of money or time permits of being recorded.

* <Roy. Soc. Proc.,” A, vol. 92, p. 23.
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